
MAC Design for light-based networks

Srikanth Krishnamurthy Students: Jianxia Ning, Kostas Pelechrinis

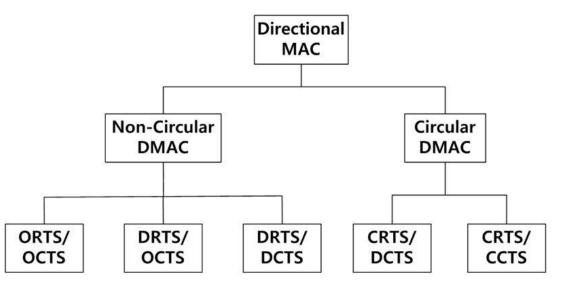
802.11 PHY

802.11 MAC

- Distributed and centralized MAC
 - Distributed Coordination Function (DCF)
 - multi-hop ad hoc mode
 - Point Coordination Function (PCF)
 - Access point (AP)/client mode
- DCF is a Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) protocol

CSMA/CA

Carrier sensing (CSMA)


- Sense channel busy \rightarrow do not transmit
- Sense channel idle \rightarrow okay to transmit
- Hidden terminal problem
 - Solution: RTS/CTS
- Collision Avoidance (CA)
 - Collision detection (CD) does not work over wireless media
 - exponential random backoff
 - Acknowledgement (two way handshake)

Directional Antennas

- Non-uniform antenna gain
 - Much higher/lower gains in particular directions
- Hardware realization
 - Antenna array
 - Beamforming
 - MIMO
- Opportunities
 - Less interference \rightarrow more spatial reuse
 - Better signal quality → better network connectivity

Directional MAC Protocols

- Challenges
 - Range varies with beamwidth
 - Deafness problem
- Example solutions

- CSMA/CA based
- DATA/ACK are transmitted directionally

Ultraviolet Wireless Communication

PHY characteristics

- Deep UV band is solar blind, good for outdoor
- Directional transmission
- Tunable pointing angle
 - Small pointing angle → full duplex, larger received energy, low propagation delay, small delay spread and higher data rates
 - Large pointing angle → beams are not easily blocked by obstacles in outdoor environments
- NLOS links
 - Result from multiple choices of direction and pointing angle.

Opportunities and Challenges for UV-WOC MAC Layer

- Spatial reuse
 - A transmitter decides the (a) direction and (b) pointing angle to use for each new connection.
 - Based on his knowledge about the receiver and currently ongoing transmissions.
 - Aim to successfully establish a connection, meanwhile refine the interference caused to other communications.
 - Direction and pointing angle together provide two dimensional spatial reuse.

Opportunities and Challenges for UV-WOC MAC Layer (contd.)

- Opportunistic full duplex
 - If small pointing angle is used for transmission, operate in full-duplex mode.
 - If large pointing angle is used, operate in half-duplex mode.
- Multi-rate choice
 - Smaller pointing angle → less delay spread →
 higher rate

Challenges in light communications

- MAC design needs to be tightly inter-related to the PHY
- PHY characteristics such as delay spread, directionality etc. affect access strategies.
- Blockage, reflections and dispersion will also have an effect.