MAC Design for light-based networks

Srikanth Krishnamurthy
Students: Jianxia Ning, Kostas Pelechrinis
802.11 PHY

2.4 GHz
- Frequency Hopping Spread Spectrum (FHSS) PHY
 1, 2 Mbps
- Direct Sequence Spread Spectrum (DSSS) PHY
 1, 2 Mbps
- Orthogonal Frequency Division Multiplexing (OFDM) PHY
 6, 9, 12, 18, 24, 36, 48, 54 Mbps
 802.11a

5.7 GHz
- Higher rate (DSSS) PHY
 5.5, 11 Mbps
 802.11b

>1 THz
- Infrared (IR) PHY
 1, 2 Mbps
- OFDM PHY
 50~144 Mbps
 802.11n

802.11a

802.11b

802.11g

802.11n
802.11 MAC

• Distributed and centralized MAC
 – Distributed Coordination Function (DCF)
 • multi-hop ad hoc mode
 – Point Coordination Function (PCF)
 • Access point (AP)/client mode

• DCF is a Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) protocol
CSMA/CA

• Carrier sensing (CSMA)
 – Sense channel busy → do not transmit
 – Sense channel idle → okay to transmit
 – Hidden terminal problem
 • Solution: RTS/CTS

• Collision Avoidance (CA)
 – Collision detection (CD) does not work over wireless media
 – exponential random backoff
 – Acknowledgement (two way handshake)
Directional Antennas

• Non-uniform antenna gain
 – Much higher/lower gains in particular directions

• Hardware realization
 – Antenna array
 – Beamforming
 – MIMO

• Opportunities
 – Less interference \rightarrow more spatial reuse
 – Better signal quality \rightarrow better network connectivity
Directional MAC Protocols

• Challenges
 – Range varies with beamwidth
 – Deafness problem

• Example solutions

 • CSMA/CA based
 • DATA/ACK are transmitted directionally
Ultraviolet Wireless Communication

• PHY characteristics
 – Deep UV band is solar blind, good for outdoor
 – Directional transmission
 – Tunable pointing angle
 • Small pointing angle → full duplex, larger received energy, low propagation delay, small delay spread and higher data rates
 • Large pointing angle → beams are not easily blocked by obstacles in outdoor environments
 – NLOS links
 • Result from multiple choices of direction and pointing angle.
Opportunities and Challenges for UV-WOC MAC Layer

• Spatial reuse

 – A transmitter decides the (a) direction and (b) pointing angle to use for each new connection.
 • Based on his knowledge about the receiver and currently ongoing transmissions.
 • Aim to successfully establish a connection, meanwhile refine the interference caused to other communications.
 • Direction and pointing angle together provide two dimensional spatial reuse.
Opportunities and Challenges for UV-WOC MAC Layer (contd.)

• Opportunistic full duplex
 – If small pointing angle is used for transmission, operate in full-duplex mode.
 – If large pointing angle is used, operate in half-duplex mode.

• Multi-rate choice
 – Smaller pointing angle → less delay spread → higher rate
Challenges in light communications

• MAC design needs to be tightly inter-related to the PHY

• PHY characteristics such as delay spread, directionality etc. affect access strategies.

• Blockage, reflections and dispersion will also have an effect.